direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C6×C8⋊C22, C24⋊7C23, C12.82C24, C8⋊(C22×C6), D8⋊3(C2×C6), (C2×D8)⋊11C6, (C6×D8)⋊25C2, C4.66(C6×D4), (C2×SD16)⋊4C6, SD16⋊1(C2×C6), D4⋊2(C22×C6), C4.5(C23×C6), Q8⋊3(C22×C6), (C2×C24)⋊21C22, (C6×SD16)⋊15C2, C12.329(C2×D4), (C2×C12).525D4, (C3×D8)⋊19C22, (C6×D4)⋊66C22, (C22×D4)⋊14C6, (C3×D4)⋊13C23, (C6×M4(2))⋊8C2, (C2×M4(2))⋊3C6, M4(2)⋊3(C2×C6), (C6×Q8)⋊54C22, (C3×Q8)⋊12C23, C23.55(C3×D4), C22.23(C6×D4), (C22×C6).172D4, C6.203(C22×D4), (C2×C12).975C23, (C3×SD16)⋊17C22, (C3×M4(2))⋊24C22, (C22×C12).465C22, (C2×C8)⋊2(C2×C6), (D4×C2×C6)⋊26C2, C2.27(D4×C2×C6), C4○D4⋊6(C2×C6), (C6×C4○D4)⋊27C2, (C2×C4○D4)⋊15C6, (C2×D4)⋊15(C2×C6), (C2×Q8)⋊16(C2×C6), (C2×C4).136(C3×D4), (C2×C6).419(C2×D4), (C3×C4○D4)⋊24C22, (C22×C4).81(C2×C6), (C2×C4).45(C22×C6), SmallGroup(192,1462)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×C8⋊C22
G = < a,b,c,d | a6=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >
Subgroups: 530 in 298 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C12, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C2×C24, C3×M4(2), C3×D8, C3×SD16, C22×C12, C22×C12, C6×D4, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, C23×C6, C2×C8⋊C22, C6×M4(2), C6×D8, C6×SD16, C3×C8⋊C22, D4×C2×C6, C6×C4○D4, C6×C8⋊C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C8⋊C22, C22×D4, C6×D4, C23×C6, C2×C8⋊C22, C3×C8⋊C22, D4×C2×C6, C6×C8⋊C22
(1 15 39 21 25 41)(2 16 40 22 26 42)(3 9 33 23 27 43)(4 10 34 24 28 44)(5 11 35 17 29 45)(6 12 36 18 30 46)(7 13 37 19 31 47)(8 14 38 20 32 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(18 20)(19 23)(22 24)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)(42 44)(43 47)(46 48)
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)
G:=sub<Sym(48)| (1,15,39,21,25,41)(2,16,40,22,26,42)(3,9,33,23,27,43)(4,10,34,24,28,44)(5,11,35,17,29,45)(6,12,36,18,30,46)(7,13,37,19,31,47)(8,14,38,20,32,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)(42,44)(43,47)(46,48), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)>;
G:=Group( (1,15,39,21,25,41)(2,16,40,22,26,42)(3,9,33,23,27,43)(4,10,34,24,28,44)(5,11,35,17,29,45)(6,12,36,18,30,46)(7,13,37,19,31,47)(8,14,38,20,32,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)(42,44)(43,47)(46,48), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47) );
G=PermutationGroup([[(1,15,39,21,25,41),(2,16,40,22,26,42),(3,9,33,23,27,43),(4,10,34,24,28,44),(5,11,35,17,29,45),(6,12,36,18,30,46),(7,13,37,19,31,47),(8,14,38,20,32,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(18,20),(19,23),(22,24),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38),(42,44),(43,47),(46,48)], [(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | ··· | 6V | 8A | 8B | 8C | 8D | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | C6 | D4 | D4 | C3×D4 | C3×D4 | C8⋊C22 | C3×C8⋊C22 |
kernel | C6×C8⋊C22 | C6×M4(2) | C6×D8 | C6×SD16 | C3×C8⋊C22 | D4×C2×C6 | C6×C4○D4 | C2×C8⋊C22 | C2×M4(2) | C2×D8 | C2×SD16 | C8⋊C22 | C22×D4 | C2×C4○D4 | C2×C12 | C22×C6 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 4 | 4 | 16 | 2 | 2 | 3 | 1 | 6 | 2 | 2 | 4 |
Matrix representation of C6×C8⋊C22 ►in GL6(𝔽73)
65 | 0 | 0 | 0 | 0 | 0 |
0 | 65 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
72 | 71 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 2 | 0 |
0 | 0 | 72 | 0 | 1 | 1 |
0 | 0 | 0 | 72 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 72 |
0 | 0 | 1 | 0 | 72 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 1 | 0 |
0 | 0 | 72 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [65,0,0,0,0,0,0,65,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,1,0,0,0,0,71,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,2,1,1,1,0,0,0,1,0,0],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,72,72,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C6×C8⋊C22 in GAP, Magma, Sage, TeX
C_6\times C_8\rtimes C_2^2
% in TeX
G:=Group("C6xC8:C2^2");
// GroupNames label
G:=SmallGroup(192,1462);
// by ID
G=gap.SmallGroup(192,1462);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102,6053,3036,124]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations